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Abstract

Arterial pulse waveform morphology evolves with age,
reflecting structural and functional changes in the cardio-
vascular system. Thus, vascular age is a valuable surro-
gate marker of cardiovascular health, and premature vas-
cular ageing can indicate increased disease risk. Pulse
wave analysis could support risk stratification in otherwise
asymptomatic adults. We transformed pulse wave time-
series data from photoplethysmography (PPG) and arte-
rial tonometry into images, using the Symmetric Projec-
tion Attractor Reconstruction (SPAR) method. These SPAR
images were used to train a convolutional neural network
to classify healthy subjects into two closely spaced age
groups (35—40 and 50-55 years). The model demonstrated
consistent classification performance across internal and
external test sets, achieving F1 scores above 70% for both
PPG and tonometry signals. These results suggest that
SPAR-derived pulse wave images contain discriminative
morphological features even among healthy adults close
in age. This proof-of-concept lays the groundwork for fu-
ture research into the use of SPAR for early risk detection
using smart wearables.

1. Introduction

Vascular ageing (VA) is a complex process that involves
the gradual deterioration of arterial structure and func-
tion over time, negatively impacting organ function [1].
The gold-standard measurement for VA is carotid-femoral
pulse wave velocity, but this requires trained personnel and
is not routinely clinically available [2]. In healthy ageing,
chronological and vascular ages typically correspond [3].

Deviations from this relationship, manifesting as pre-
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mature VA, are associated with increased cardiovascular
disease (CVD) risk. Therefore, early detection of prema-
ture VA is critical for timely prevention and management
of CVD, which remains a leading global health burden.
Non-invasive pulse wave signals from photoplethysmog-
raphy (PPG) or arterial tonometry can help assess vascular
age, through analysis of pulse wave morphology, which
changes with age. PPG is an optical method used in clin-
ical and wearable devices to measure pulse waves at sites
like the wrist and finger [4]. Arterial tonometry, mainly
used clinically, measures pressure from superficial arter-
ies such as the radial or carotid arteries [5]. By compar-
ing signal-based estimates of vascular age to a person’s
chronological age, we hypothesise we could identify early
VA in community-based settings.

This study focuses on image-based age classification
leveraging PPG and tonometry-derived pulse waveforms,
targeting two narrow yet clinically relevant age cohorts
(35-40 and 50-55 years), representing a critical window
during which individuals may begin to manifest subclin-
ical CVD risk. Pulse waves were converted into images
using the Symmetric Projection Attractor Reconstruction
(SPAR) method, which condenses time-series data into a
single image [6]. These images were used to train a con-
volutional neural network (CNN) to classify age, assign-
ing each unseen image to the most likely of the two classes
(<40 or >50).

2. Methods

2.1. Datasets

Two datasets were used in this study: Round 1 data from
the Asklepios Study and the Vortal dataset (Table 1).
Both comprised recordings from participants free from di-
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Figure 1. Full pipeline adopted in this study. Section a) illustrates the SPAR pipeline, which processes a raw signal into a
SPAR attractor image (density plot). Section b) illustrates the CNN pipeline, where CNN takes as input the density plots

and gives as output a class label.

agnosed CVD at study initiation, collected in the supine
position. The Asklepios Study [7] includes 2,524 individ-
uals (30-59 years, 52% female) randomly sampled from
two twinned Belgian communities. The exact chronolog-
ical age of each participant was labelled. Arterial tonom-
etry waveforms (20 s, 200 Hz) were acquired at a single
centre by one trained operator using the same device. The
Vortal dataset [8] contains finger PPG recordings from 56
subjects: 40 labelled as *Young’ (18-35 years, 53% fe-
male) and 16 as Elderly’ (70+ years, 56% female). Data
were collected in a London clinical trials unit (approx. 10
min per subject, 125 Hz).

2.2. Data selection

From the original Asklepios population, a subgroup was
considered for this study. We included only participants
aged 30-40 and 50-59 years. Obese subjects (BMI > 30
kg/m?) and those with high blood pressure (systolic > 140
mmHg or diastolic > 90 mmHg) were excluded, follow-
ing the 2024 ESC guidelines for hypertension classifica-
tion [9]. For the Vortal dataset, we used the whole cohort,
as no metadata were available. The characteristics of both
populations, assumed to be healthy, are shown in Table 1.

2.3. Symmetric Projection Attractor Re-
construction (SPAR) method

The SPAR method [6] is a non-fiducial points-based
method that combines mathematics and cardiovascular
physiology to quantify pulse waveform morphology and
variability. Given a raw pulse wave signal, the average cy-
cle length is first estimated for the selected time window.

Table 1. Population characteristics for each dataset used
in this study.

Asklepios Vortal
No. of participants 2,524 56
Sex (M/F) 1,223/1,301 27/29
Age range (years) 30-59 18-35,70+
Signal type Tonometry PPG
Raw signal length 20s 10 min
Analysed signal length 20s 20s

Table 2. Total and selected number of subjects in the

Asklepios and Vortal datasets, along with the number of
SPAR images used in each group.

Cohort Total Selected Images
Asklepios 30-34 15 12 12
Asklepios 35-40 456 341 341
Asklepios 50-55 514 251 251
Asklepios 56-59 160 77 77
Vortal 18-35 40 40 1302
Vortal 70+ 16 16 528

Next, a three-dimensional (3D) attractor is generated using
three delay coordinates, each separated by one-third of the
average cycle length. The 3D attractor is then projected
onto a two-dimensional (2D) plane normal to the unit vec-
tor and converted into a density plot (Figure 1a). This plot
is the final attractor image used to train and validate CNNs
in this work.
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Figure 2. Examples of single tonometry (left) and PPG (right) pulse waveforms and their correspondent SPAR attractor

images, generated using 20 seconds of data.

For the Asklepios dataset, we used one 20-second seg-
ment per subject, resulting in one attractor image per par-
ticipant. For the Vortal dataset, we extracted multiple
non-overlapping 20-second segments from the 10-minute
recordings, generating around 30 images per subject.

2.4. Model and metrics

The CNN used in this study was based on a simplified

TinyVGG architecture originally presented by Wang et al.
[10]. It comprises two convolutional blocks followed by a
final classification layer (Figure 1b).
Model performance was evaluated using sensitivity (TP /
(TP + FN)), specificity (TN / (TN+FP)) and the F1 score,
which is the harmonic mean of precision (TP / (TP + FP))
and sensitivity; with TP being the true positives, TN the
true negatives, FP the false positives and FN the false neg-
atives. In this study, the positive class corresponded to
the 50-55 years group, and the negative class to the 35-40
years group. Therefore, sensitivity measured the model’s
ability to correctly identify subjects aged > 50 years, while
specificity measured its ability to correctly classify those
aged < 40 years.

2.5. Training and testing

The model was trained on 80% of the Asklepios data
from the 35-40 and 50-55 age groups. The remaining 20%
was split equally into a validation set (10%) and a test
set (10%). Given the relatively small size, 10-fold cross-
validation was performed to improve robustness, thus ob-
taining 10 different sets of model weights which were eval-
uated separately when testing. The model was then tested
on different test sets, reported in Table 2. When testing on
the larger Asklepios population, the same 10-fold struc-
ture was maintained to minimise bias. The Vortal test set
remained constant across all evaluations.

Table 3. Model performance across different test sets.

F1 score (%) Sens (%) Spec (%)
Test Asklepios 709 £ 8.6 670+ 123 850+63
35-40 and 50-55
Test Asklepios 793 +£20 70.5+£3.1 843 +48
30-40 and 50-59
Test Vortal 72.8 £2.5 86.9+59 79.0+£20
3. Results

The model reached average F1 scores of at least 70%,
with sensitivity >67% and specificity >79% across all
test sets (Table 3). Overall, performance improved with
larger test sets and broader age ranges, suggesting robust
model generalisation. The higher sensitivity observed in
these sets indicates greater accuracy in classifying older
subjects. Additionally, standard deviations decreased with
broader test sets, reflecting more consistent performance
across cross-validation folds.

When evaluated on PPG signals, the model showed
higher F1 scores compared to the baseline test on the
Asklepios dataset, together with an increase in sensitivity
and a slight decrease in specificity. These results highlight
the ability of the model, combined with the SPAR method,
to detect age-related morphological changes across both
tonometry and PPG signals. Figure 2 illustrates these
morphological differences. In younger individuals (35-40
years for tonometry, 18-35 years for PPG), pulse wave-
forms display a distinct secondary peak, resulting in attrac-
tors with “looped” edges and closed centres. In contrast,
older subjects (50-55 years for tonometry, 70+ years for
PPG) exhibit attenuated or absent secondary peaks, pro-
ducing more open attractors with reduced looping, high-
lighting age-related waveform changes.
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4. Discussion and conclusion

We have presented a simple yet effective model that can
classify chronological age within a healthy population free
from CVD, using two non-invasive pulse wave signals:
arterial tonometry and PPG. We purposefully focused on
healthy individuals for whom chronological and vascular
ages are expected to align. The strong classification per-
formance achieved on both tonometry and PPG test sets
shows that each signal type contains enough morphologi-
cal information to distinguish between the two selected age
groups. These results suggest that the model successfully
captures age-related changes in the cardiovascular system
that manifest as alterations in pulse wave morphology.

Importantly, the presence of noise in the tonometry
recordings (Figure 2) did not impact the quality of the
resulting attractor images, when compared to those de-
rived from PPG. This indicates that the SPAR method is
inherently robust to signal noise, preserving relevant mor-
phological features despite variability in signal acquisition
quality.

The main limitation of this work lies in the small size
of the training set, which was mitigated through 10-fold
cross-validation to improve model robustness and gener-
alisability. Furthermore, the detailed selection criteria ap-
plied to the Asklepios dataset could not be applied to the
Vortal dataset due to the absence of detailed metadata. As a
result, the Vortal dataset may include individuals with high
blood pressure or BMI. However, the large age difference
between the younger and older Vortal groups supports its
suitability as a proof-of-concept PPG test set for age clas-
sification.

Model performance could be increased by implement-
ing a more complex CNN model and by training on a larger
and more diverse population. This would allow for evalua-
tion of the interplay between model complexity and perfor-
mance. Whilst CNNs can be directly applied to raw pulse
waves signals, SPAR’s robustness on noisy signals and at-
a-glance summary of multiple pulse waves as a single 2D
image may be more intuitive for end users for visual inter-
pretation.

In summary, while age-related differences in pulse wave
morphology are well established, this study demonstrates
a SPAR-based CNN approach capable of classifying in-
dividuals into two closely spaced age ranges within a
CVD-free population. Moreover, our findings indicate
that tonometry and PPG signals are sufficiently similar
to enable this classification task. Given the infrastructure
demands of gold-standard VA assessments such as pulse
wave velocity, our findings support further research into
the use of SPAR-transformed PPG signals from commu-
nity or wearable devices for the early detection and strati-
fication of cardiovascular risk.
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